Signaling mechanisms that mediate nitric oxide production induced by acetylcholine exposure and withdrawal in cat atrial myocytes.
نویسندگان
چکیده
Fluorescence microscopy and the NO-sensitive indicator 4,5-diaminofluorescein were used to determine the effects of acetylcholine (ACh) on intracellular NO (NOi) in cat atrial myocytes. Field stimulation (1 Hz) of cells or exposure of quiescent cells to ACh (1 to 10 micromol/L) had no effect on NOi. However, in field-stimulated cells, ACh exposure increased NOi, and ACh withdrawal elicited an additional, prominent increase in NOi production. During ACh exposure, addition of 1 micromol/L atropine increased NOi production similar to ACh withdrawal. ACh-induced increases in NOi were reduced by prior exposure to 1 mmol/L extracellular Ca2+ ([Ca2+]o) and prevented by 0.5 mmol/L [Ca2+]o, 1 micromol/L verapamil, 1 micromol/L atropine, 10 micromol/L L-N5-(1-iminoethyl)ornithine, 10 micromol/L W-7, or incubating cells in pertussis toxin or 10 micromol/L LY294002 (inhibits phosphatidylinositol 3-kinase). Switching to 0.5 mmol/L [Ca2+]o during ACh withdrawal prevented the additional increase in NOi. ACh exposure increased phosphorylation (Ser473) of protein kinase B (Akt), and this effect was blocked by LY294002 and unaffected in low (0.5 mmol/L) [Ca2+]o. Confocal microscopy revealed that ACh exposure increased NOi at local subsarcolemmal sites, and ACh withdrawal additionally increased NOi by recruiting additional subsarcolemmal release sites. Disruption of caveolae by 2 mmol/L methyl-beta-cyclodextrin abolished ACh-induced NOi production. We conclude that in cat atrial myocytes, ACh stimulates NOi release from local subsarcolemmal sites. ACh-induced increases in NOi requires both muscarinic receptor-mediated Gi protein/phosphatidylinositol 3-kinase/Akt signaling and voltage-activated Ca2+ influx for stimulation of calmodulin-dependent endothelial NO synthase activity. Increases in NOi elicited by ACh withdrawal result from the recovery of Ca2+ influx after ACh inhibition. NO signaling elicited by ACh withdrawal stimulates rapid recovery from cholinergic atrial inhibition.
منابع مشابه
Nitric Oxide Signaling Mediates Stimulation of L-Type Ca2+ Current Elicited by Withdrawal of Acetylcholine in Cat Atrial Myocytes
A perforated-patch whole-cell recording method was used to determine whether nitric oxide signaling participates in acetylcholine (ACh)-induced regulation of basal L-type Ca2+ current (ICa,L) in cat atrial myocytes. Exposure to 1 microM ACh for 2 min inhibited basal ICa,L (-21 +/- 3%), and withdrawal of ACh elicited rebound stimulation of ICa,L above control (80 +/- 13%) (n = 23). Stimulation o...
متن کاملEvaluation of nitric oxide involvement in effect of lead on dependency to morphine in mice
In the present study, interactions between lead exposure with nitric oxide precursor (L-arginine) or nitric oxide synthase (NOS) inhibitor (L-NAME) on naloxone-induced jumping and diarrhea in morphine-dependent mice were examined. Chronic lead acetate (0.05%) exposure altered naloxone-induced jumping and diarrhea in mice. Jumping was decreased after 7 days and was unchanged 14 and 28 days after...
متن کاملβ2-Adrenergic Receptor Signaling Acts via No Release to Mediate Ach-Induced Activation of Atp-Sensitive K+ Current in Cat Atrial Myocytes
In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-A...
متن کاملCytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A, and CAT-2B.
Cytokine-dependent production of nitric oxide (NO) by rat cardiac myocytes is a consequence of increased expression of the inducible isoform of nitric oxide synthase (iNOS or NOS2) and, in the presence of insulin, depresses the contractile function of these cells in vivo and in vitro. Experiments reported here show that L-lysine, a competitive antagonist of L-arginine uptake, suppressed NO prod...
متن کاملRegulation of cardiac alternans by β-adrenergic signaling pathways.
In cat atrial myocytes, β-adrenergic receptor (β-AR) stimulation exerts profound effects on excitation-contraction coupling and cellular Ca(2+) cycling that are mediated by β(1)- and β(2)-AR subtypes coupled to G proteins (G(s) and G(i)). In this study, we determined the effects of β-AR stimulation on pacing-induced Ca(2+) alternans. Ca(2+) alternans was recorded from single cat atrial myocytes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 93 12 شماره
صفحات -
تاریخ انتشار 2003